Imagine a particle of mass m, constrained to move along the x-axis, subject to some specified force F(x, t). The program of classical mechanics is to deter- mine the position of the particle at any given time: x(t). Once we know that, we can figure out the velocity (\( v=\frac{dx}{dt}\) ), the momentum (p = mv), the kinetic energy ( \( T=\frac{1}{2}mv^2 \) ), or any other dynamical variable of interest. And how do we go about determining x(t)? We apply Newton's second law: F = ma. (For conservative systems the only kind we shall consider, and, fortunately, the only kind that occur at the microscopic level---the force can be expressed as the derivative of a potential energy function, \( F=-\frac{\partial V}{\partial x} \) , and Newton's law reads \( m\frac{d^2x}{dt^2}=-\frac{\partial V}{\partial x} \) .) This, together with appropriate initial conditions (typically the position and velocity at t 0), determines x(t). Quantum mechanics approaches this same problem quite differentl
Sistem periodik unsur modern yang disebut juga sistem periodik bentuk panjang, terdiri atas 7 periode dan 8 golongan. Periode 1, 2, dan 3 disebut periode pendek karena berisi sedikit unsur, sedangkan periode lainnya disebut periode panjang . Golongan terbagi atas golongan A dan golongan B. Unsur-unsur golongan A disebut golongan utama , sedangkan golongan B disebut golongan transisi . Golongan-golongan B terletak antara golongan IIA dan IIIA. Golongan B mulai terdapat pada periode 4. Dalam sistem periodik unsur yang terbaru, golongan ditandai dengan golongan 1 sampai dengan golongan 18 secara berurutan dari kiri ke kanan. Dengan cara ini, maka unsur transisi terletak pada golongan 3 sampai dengan golongan 12. Hidrogen ditempatkan dalam golongan IA, terutama karena mempunyai 1 elektron valensi. Akan tetapi, terdapat perbedaan sifat yang cukup nyata antara hidrogen dengan unsur golongan IA lainnya. Hidrogen tergolong nonlogam, sedangkan yang lainnya me