Imagine a particle of mass m, constrained to move along the x-axis, subject to some specified force F(x, t). The program of classical mechanics is to deter- mine the position of the particle at any given time: x(t). Once we know that, we can figure out the velocity (\( v=\frac{dx}{dt}\) ), the momentum (p = mv), the kinetic energy ( \( T=\frac{1}{2}mv^2 \) ), or any other dynamical variable of interest. And how do we go about determining x(t)? We apply Newton's second law: F = ma. (For conservative systems the only kind we shall consider, and, fortunately, the only kind that occur at the microscopic level---the force can be expressed as the derivative of a potential energy function, \( F=-\frac{\partial V}{\partial x} \) , and Newton's law reads \( m\frac{d^2x}{dt^2}=-\frac{\partial V}{\partial x} \) .) This, together with appropriate initial conditions (typically the position and velocity at t 0), determines x(t). Quantum mechanics approaches this same problem quite differentl
Contoh soal dan pembahasan rangkaian R-L-C - Rangkaian R-L-C (Resistor, Induktor, Kapasitor) adalah salah satu topik penting dalam analisis rangkaian AC. Pemahaman tentang cara kerja rangkaian ini, terutama saat resonansi, sangat esensial bagi pelajar teknik dan fisika. Artikel ini menyajikan contoh soal dan pembahasan mengenai rangkaian R-L-C, termasuk cara menghitung impedansi, arus, dan daya dalam berbagai kondisi. Dengan pendekatan ini, diharapkan pembaca dapat lebih memahami konsep dan aplikasi praktis dari rangkaian R-L-C. Daftar Isi No. 1. Soal SNMPTN 2017/SAINTEK/133/25 Contoh Soal No. 2. Contoh Soal Rangkaian Seri R-L-C Contoh Soal dan Pembahasan Arus Bolak Balik R-L Soal R-L-C Nomor 7 : Soal UMPTN Fisika Tahun 1999 No. 1. Soal SNMPTN 2017/SAINTEK/133/25 . Sumber a