Imagine a particle of mass m, constrained to move along the x-axis, subject to some specified force F(x, t). The program of classical mechanics is to deter- mine the position of the particle at any given time: x(t). Once we know that, we can figure out the velocity (\( v=\frac{dx}{dt}\) ), the momentum (p = mv), the kinetic energy ( \( T=\frac{1}{2}mv^2 \) ), or any other dynamical variable of interest. And how do we go about determining x(t)? We apply Newton's second law: F = ma. (For conservative systems the only kind we shall consider, and, fortunately, the only kind that occur at the microscopic level---the force can be expressed as the derivative of a potential energy function, \( F=-\frac{\partial V}{\partial x} \) , and Newton's law reads \( m\frac{d^2x}{dt^2}=-\frac{\partial V}{\partial x} \) .) This, together with appropriate initial conditions (typically the position and velocity at t 0), determines x(t). Quantum mechanics approaches this same problem quite differentl...
Soal Nomor 1 Sebuah benda yang bergetar harmonik selalu mempunyai .... A. kecepatan terbesar pada simpangan terkecil B. kecepatan yang konstan C. simpangan yang berbanding lurus dengan gaya pergeseran D. amplitudo kecil E. kecepatan terbesar pada saat simpangan terbesar Soal Nomor 2 Sebuah pegas digantungkan beban m. Jika y adalah pertambahan panjang pegas, periode benda saat pegas bergetar harmonik adalah .... A. \( 2\pi\sqrt{\frac{mg}{y}} \) B. \( \pi\sqrt{\frac{mg}{y}} \) C. \( 2\pi\sqrt{\frac{y}{g}} \) D. \( \frac{1}{y}\sqrt{mg} \) E. \( \pi m\sqrt{\frac{g}{y}} \) Pembahasan : \begin{align*} \omega &= \sqrt{\frac{k}{m}} \\ \frac{2\pi}{T} &= \sqrt{\frac{\frac{mg}{y}}{m}} \\ T&= 2\pi \sqrt{\frac{y}{g}} \end{align*} Jawaban : C Soal Nomor 3 Sebuah benda bergetar harmonik dengan amplitudo A. Pada saat kecepatannya sama dengan setengah kecepatan maksimum, maka besar simpangannya adalah .... A. \( \sqrt{3}A\) B. \( \sqrt{2}A\) C. \( \fra...