Imagine a particle of mass m, constrained to move along the x-axis, subject to some specified force F(x, t). The program of classical mechanics is to deter- mine the position of the particle at any given time: x(t). Once we know that, we can figure out the velocity (\( v=\frac{dx}{dt}\) ), the momentum (p = mv), the kinetic energy ( \( T=\frac{1}{2}mv^2 \) ), or any other dynamical variable of interest. And how do we go about determining x(t)? We apply Newton's second law: F = ma. (For conservative systems the only kind we shall consider, and, fortunately, the only kind that occur at the microscopic level---the force can be expressed as the derivative of a potential energy function, \( F=-\frac{\partial V}{\partial x} \) , and Newton's law reads \( m\frac{d^2x}{dt^2}=-\frac{\partial V}{\partial x} \) .) This, together with appropriate initial conditions (typically the position and velocity at t 0), determines x(t). Quantum mechanics approaches this same problem quite differentl
Sebuah mobil bermassa 1500 kg bergerak dengan percepatan 5 m/s2. Gaya yang harus diberikan oleh mesin mobil tersebut adalah sebesar ....
A. 6000 N
B. 6500 N
C. 7000 N
D. 7500 N
E. 8000 N
Pembahasan :
Diketahui :
m = 1500 kg
a = 5 m/s2
Ditanyakan :
Gaya : F = ?
Jawaban : D
A. 6000 N
B. 6500 N
C. 7000 N
D. 7500 N
E. 8000 N
Pembahasan :
Diketahui :
m = 1500 kg
a = 5 m/s2
Ditanyakan :
Gaya : F = ?
Jawaban : D
Comments
Post a Comment